
www.elsevier.com/locate/jmr

Journal of Magnetic Resonance 172 (2005) 296–305
Optimal control of coupled spin dynamics: design of NMR
pulse sequences by gradient ascent algorithms

Navin Khanejaa,*, Timo Reissb, Cindie Kehletb, Thomas Schulte-Herbrüggenb,
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Abstract

In this paper, we introduce optimal control algorithm for the design of pulse sequences in NMR spectroscopy. This methodology
is used for designing pulse sequences that maximize the coherence transfer between coupled spins in a given specified time, minimize
the relaxation effects in a given coherence transfer step or minimize the time required to produce a given unitary propagator, as
desired. The application of these pulse engineering methods to design pulse sequences that are robust to experimentally important
parameter variations, such as chemical shift dispersion or radiofrequency (rf) variations due to imperfections such as rf inhomoge-
neity is also explained.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In applications of NMR spectroscopy, it is desirable
to have optimized pulse sequences tailored to specific
applications. For example, in multi-dimensional NMR
experiments one is often interested in pulse sequences
which maximize the coherence transfer between coupled
spins in a given specified time, minimize the relaxation
effects in a given coherence transfer step or minimize
the time required to produce a given unitary propagator.
From an engineering perspective all these problems are
challenges in optimal control [1,2] where one is inter-
ested in tailoring the excitation to a dynamical system
to maximize some performance criterion. In this paper,
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we present gradient ascent algorithms for optimizing
pulse sequences (control laws) for steering the dynamics
of coupled nuclear spins. Similar methods and their vari-
ants have been applied in laser spectroscopy [3–7]. In
NMR, this approach has been used to design band-se-
lective pulses [8–10], robust broadband excitation, and
inversion pulses [11–13]. However, previous studies in
NMR were limited to uncoupled spin systems whose
dynamics is governed by the Bloch equations. It is
important to note that the optimal control principles
are standard text book material in applied optimal con-
trol [1,2]. The focus of this paper is the application of
these methods for some important problems in NMR.
Previously, gradient-based optimizations of NMR pulse
sequences for coupled spin systems have almost exclu-
sively relied on gradients computed by the difference
method. One important exception are analytical deriva-
tives introduced by Levante et al. [14] for pulse sequence
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optimizations, where the performance can be expressed
in terms of the eigenvalues and eigenfunctions of the to-
tal propagator.

The paper is organized as follows. In Section 2, we
present the basic theoretical ideas and numerical optimi-
zation algorithms directly applicable to the problem of
pulse design. To illustrate the method, we present three
simple but non-trivial applications to coupled spin sys-
tems both in the presence and in the absence of relaxa-
tion. In Section 3.1, we look at the problem of finding
maximum coherence transfer achievable in a given time
and the design of pulse sequences that achieve this trans-
fer. In Section 3.2, the algorithm is used to find relaxa-
tion optimized pulse sequences that perform desired
coherence transfer operations with minimum losses. In
Section 3.3, we design pulse sequences that produce a
desired unitary propagator in a network of coupled
spins in minimal time. In all examples, we compare the
results obtained by the numerical optimization algo-
rithm with optimal solutions obtained by analytical
arguments based on geometric optimal control theory.
In the conclusion section, we discuss the convergence
properties of the proposed algorithm and possible
extensions.
Fig. 1. Schematic representation of a control amplitude uk (t),
consisting of N steps of duration Dt = T/N. During each step j, the
control amplitude uk (j) is constant. The vertical arrows represent
gradients dU0=dukðjÞ, indicating how each amplitude uk (j) should be
modified in the next iteration to improve the performance function U0.
2. Theory

2.1. Transfer between Hermitian operators in the absence

of relaxation

To fix ideas, we first consider the problem of pulse de-
sign for polarization or coherence transfer in the absence
of relaxation. The state of the spin system is character-
ized by the density operator q (t), and its equation of
motion is the Liouville–von Neuman equation [15]

_qðtÞ ¼ �i H0 þ
Xm
k¼1

ukðtÞHk

 !
; qðtÞ

" #
; ð1Þ

where H0 is the free evolution Hamiltonian, Hk are the
radiofrequency (rf) Hamiltonians corresponding to the
available control fields and u (t) = (u1 (t), u2 (t), . . .,um (t))
represents the vector of amplitudes that can be changed
and which is referred to as control vector. The problem
is to find the optimal amplitudes uk (t) of the rf fields that
steer a given initial density operator q (0) = q0 in a spec-
ified time T to a density operator q (T) with maximum
overlap to some desired target operator C. For Hermi-
tian operators q0 and C, this overlap may be measured
by the standard inner product

hCjqðT Þi ¼ tr CyqðT Þ
� �

: ð2Þ

(For the more general case of non-Hermitian operators,
see Section 2.2). Hence, the performance index U0 of the
transfer process can be defined as
U0 ¼ hCjqðT Þi: ð3Þ
In the following, we will assume for simplicity that

the chosen transfer time T is discretized in N equal steps
of duration Dt = T/N and during each step, the control
amplitudes uk are constant, i.e., during the jth step the
amplitude uk (t) of the kth control Hamiltonian is given
by uk (j) (cf. Fig. 1). The time-evolution of the spin sys-
tem during a time step j is given by the propagator

Uj ¼ exp �iDt H0 þ
Xm
k¼1

ukðjÞHk

 !( )
: ð4Þ

The final density operator at time t = T is

qðT Þ ¼ UN � � �U 1q0U
y
1 � � �U

y
N ; ð5Þ

and the performance function U0 (Eq. (3)) to be maxi-
mized can be expressed as

U0 ¼ hCjUN � � �U 1q0U
y
1 � � �U

y
N i: ð6Þ

Using the definition of the inner product (cf. Eq. (2))
and the fact that the trace of a product is invariant un-
der cyclic permutations of the factors, this can be rewrit-
ten as

U0 ¼ hU y
jþ1 � � �U

y
NCUN � � �Ujþ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kj

j Uj � � �U 1q0U
y
1 � � �U

y
j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

qj

i;

ð7Þ
where qj is the density operator q (t) at time t = jDt and
kj is the backward propagated target operator C at the
same time t = jDt. Let us see how the performance U0

changes when we perturb the control amplitude uk (j)
at time step j to uk (j) + duk (j). From Eq. (4), the change
in Uj to first order in duk (j) is given by

dUj ¼ �iDtdukðjÞHkUj ð8Þ

with

HkDt ¼
Z Dt

0

UjðsÞHkUjð�sÞds ð9Þ
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and

UjðsÞ ¼ exp �is H0 þ
Xm
k¼1

ukðjÞHk

 !( )
: ð10Þ

This follows from the standard formula

d

dx
eAþxBjx¼0 ¼ eA

Z 1

0

eAsBe�Asds: ð11Þ

For small Dt (when Dt � kH0 þ
Pm

k¼1ukðjÞHkk�1),
Hk � Hk and using Eqs. (7) and (8) we find to first order
in Dt

dU0

dukðjÞ
¼ �hkj j iDt½Hk; qj�i: ð12Þ

Observe we increase the performance function U0 if we
choose

ukðjÞ ! ukðjÞ þ �
dU0

dukðjÞ
; ð13Þ

where � is a small step size. This forms the basis of the
following algorithm, which we denote gradient ascent
pulse engineering (GRAPE) to distinguish it from con-
ventional gradient approaches used in NMR based on
difference methods.

Basic GRAPE algorithm

(1) Guess initial controls uk (j).
(2) Starting from q0, calculate qj ¼ Uj � � �U 1q0U

y
1 � � � U

y
j

for all j 6 N.
(3) Starting from kN = C, calculate kj ¼ U y

jþ1 � � �U
y
N

CUN � � �Ujþ1 for all j 6 N.
(4) Evaluate dU0/duk (j) and update the m · N control

amplitudes uk (j) according to Eq. (13).
(5) With these as the new controls, go to step 2.

The algorithm is terminated if the change in the per-
formance index U0 is smaller than a chosen threshold
value.

In principle, the choice of starting uk (j) can be com-
pletely random. However, an educated guess might lead
to faster convergence. Clearly, since the algorithm is
based on a gradient ascent procedure, there is no guar-
antee that it will converge to a global minimum. How-
ever, at each step the algorithm moves in the direction
of increasing performance (cf. Fig. 1), so we can be as-
sured that it converges to control amplitudes that are
extremal points of the desired performance function.
To expedite the process of this convergence, we can
adopt standard conjugate gradient methods [2].

The important advantages of the optimal control re-
lated approach are best highlighted by comparing the
GRAPE algorithm to conventionally used numerical
difference methods to calculate the gradient dU0/duk (j)
by computing U0 for the given pulse sequence uk (j)
as well as for small variations of all m · N control
amplitudes. For example, for N = 500 and m = 4, the
conventional approach would require to calculate 2001
full time evolutions of the density operator from t = 0
to T. In contrast, the GRAPE approach to calculate
the same gradient dU0/duk (j) only requires two full time
evolutions (one to propagate q0 from t = 0 to T and one
to back-propagate kN from t = T to 0), i.e., it is orders of
magnitude faster. This makes it possible to efficiently
optimizes NMR pulse sequences in much larger param-
eter spaces. As conventional approaches were typically
limited to a few dozens of control variables, a typical
strategy was to restrict the optimization to certain pulse
families, such as composite pulses with a limited number
of flip and phase angles [16,17], Gaussian pulse cascades
[18], spline functions [19], or Fourier expansions [20]. In
contrast, the GRAPE algorithm allows for much higher
flexibility as the number of pulse parameters to be opti-
mized can be orders of magnitude larger compared to
conventional approaches.

2.2. Transfer between non-Hermitian states in the absence
of relaxation

For non-Hermitian operators q0 and C (e.g.,
q0 = S� = Sx � iSy and C = I� = Ix � iIy, cf. Section
3.1), U0 as defined in Eq. (3) cannot be used directly as a
performance index for the optimization, because in gen-
eral it is not real valued. Depending on the application
[21], suitable performance functions for non-Hermitian
operatorsare the realpartofU0or theabsolutevalueofU0:

U1 ¼ ReðU0Þ ¼ RehCjqðT Þi ð14Þ
¼ RehðCx þ iCyÞjUN � � �U 1ðqx

o þ iqy
oÞU

y
1 � � �U

y
N i ð15Þ

or

U2 ¼ jU0j2 ¼ jhCjqðT Þij2 ¼ hCjqðT ÞihqðT ÞjCi; ð16Þ
where Cx and iCy are the Hermitian and skew-Hermi-
tian parts of the target operator C and qx

0 and iqy
0 are

the Hermitian and skew-Hermitian parts of q0. For
the performance function U1 we find the gradient to first
order in Dt

dU1

dukðjÞ
¼ �hkxj j iDt½Hk; q

x
j �i � hkyj j iDt½Hk; qy

j �i; ð17Þ

where qx
j and qy

j are the Hermitian and skew-Hermitian
parts of qj ¼ qx

j þ iqy
j and similarly kxj and kyj are the

Hermitian and skew-Hermitian parts of kj ¼ kxj þ ikyj .
For the performance function U2 the gradient to first or-
der in Dt is given by

dU2

dukðjÞ
¼�hkj j iDt½Hk; qj�ihqN jCi�hCjqN ihiDt½Hk; qj� jkji

¼�2Re hkj j iDt½Hk;qj�ihqN jCi
� �

:

ð18Þ
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Using the gradient dU1/duk (j) or dU2/duk (j) instead of
dU0/duk (j) in step 4, the basic GRAPE algorithm de-
scribed in Section 2.1 can also be applied to optimize
the transfer between non-Hermitian operators.

2.3. Relaxation-optimized coherence transfer

In Liouville space [15], the equation of motion for the
density operator in the presence of relaxation can be
written as

_q ¼ L̂q; ð19Þ

where L̂ ¼ �i Ĥþ Ĉ is the Liouville superoperator, Ĥ is
the Hamilton superoperator and Ĉ is the relaxation
superoperator (including thermal correction [22] if
appropriate). For simplicity, here, we consider the trans-
fer between Hermitian operators q0 and C, but the re-
sults can be easily generalized to non-Hermitian
operators (cf. Section 2.2). According to Eq. (3), a suit-
able performance function is

U0 ¼ hCjqðT Þi; ð20Þ

where now the final density operator q (T) is given by

q ðT Þ ¼ L̂N � � � L̂1q0 ð21Þ

with

L̂j ¼ expfL̂Dtg: ð22Þ

Hence, the performance function can be expressed as

U0 ¼ hCjL̂N � � � L̂1q0i

¼ hL̂y
jþ1 � � � L̂

y
NC|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

kj

j L̂j � � � L̂1q0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
qj

i ð23Þ

and as in Eq. (12) to first order in Dt

dU0

dukðjÞ
¼ �hkjjiDtĤðqjÞi ¼ �hkjjiDt½Hk; qj�i; ð24Þ

where in the presence of relaxation, kj and qj are defined
in Eq. (23).

2.4. Synthesis of unitary transformations

Now, we consider the problem to create in a given
time T a desired unitary propagator. The equation of
motion for the propagator of a closed quantum system
is

_U ¼ �i H0 þ
Xm
k¼1

ukðtÞHk

 !
U : ð25Þ

At t = 0, the initial propagator is U (0) = 1.
First, we consider the problem to approach a desired

propagator UF by applying a pulse sequence uj (t) such
that at the final time
kUF � UðT Þk2 ¼ kUFk2 � 2RehUFjUðT Þi

þ kUðT Þk2 ð26Þ

is minimized, which is equivalent to maximizing Re-
ÆUFjU (T)æ. Hence, we can define the performance func-
tion to be optimized by the pulse sequence as

U3 ¼ RehUFjUðT Þi
¼ RehUFjUN � � �U 1i
¼ RehU y

jþ1 � � �U
y
NUF|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Pj

j Uj � � �U 1|fflfflfflfflffl{zfflfflfflfflffl}
X j

i: ð27Þ

and the corresponding gradient dU3/duk (j) to first order
in Dt is given by

dU3

dukðjÞ
¼ �RehP j j iDtHkX ji: ð28Þ

While the performance index U3 may be of theoretical
interest, for practical applications, it is sufficient to ap-
proach the target propagator UF only up to an arbitrary
phase factor exp{iu} and

kUF � eiuUðT Þk2 ¼ kUFk2 � 2RehUFjeiuUðT Þi

þ kUðT Þk2 ð29Þ

is to be minimized for choice of u, which is equivalent to
maximizing the performance function

U4 ¼jhUFjUðT Þij2

¼hUFsjUN � � �U 1ihU 1 � � �UN jUFi
¼hP jjX jihX jjP ji ð30Þ

with the operators Xj and Pj as defined in Eq. (27). The
corresponding gradient dU4/duk(j) to first order in Dt is
given by

dU4

dukðjÞ
¼ � hP jjX jihiDtHkX jjP ji � hP jjiDtHkX jihX jjP ji

¼ � 2Re hPjjiDtHkX jihX jjPji
� �

: ð31Þ
2.5. Reduction of rf power and limited rf amplitudes

In the given formulation of the optimization
problem, it is also straight-forward to add to any of
the previously defined performance functions Ui, a
penalty

Urf ¼ a
XN
j¼1

Xm
k¼1

ukðjÞf g2Dt ð32Þ

for the total rf power applied during the pulse sequence
to minimize sample heating, where a is a weight of
the penalty imposed for excessive rf power. Hence, the
gradient simply contains an additional term

dUrf

du ðjÞ ¼ �2aukðjÞDt: ð33Þ
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If the maximum rf amplitude is limited, this can be taken
into account in the algorithm described in Section 2.1 by
resetting the amplitude to the maximum amplitude if it
is exceeded after step 4 (see, e.g. [12]).

2.6. Robustness

For practical applications, it is often desirable to
achieve the optimum performance for a range of param-
eters x, such as a given range of chemical shifts and/or a
given range of rf amplitudes to take into account the ef-
fects of rf inhomogeneity or rf miscalibration. If the
range of parameters is sampled at discrete values xp,
the total performance Utot can be measured by summing
over the performance of systems parameterized by xp

Utot ¼
X
p

UðxpÞ: ð34Þ

For example, for the case of Hermitian transfer, with
U (xp) = U0 (xp) (cf. Section 2.1)

Utot ¼
X
p

hCjUN ðxpÞ � � �U 1ðxpÞq0U
y
1ðxpÞ � � �U y

N ðxpÞi

¼
X
p

hkjðxpÞjqjðxpÞi ð35Þ

and

dUtot

dukðjÞ
¼ �

X
p

hkjðxpÞjiDt½Hk; qjðxpÞ�i: ð36Þ
Fig. 2. For the coherence order-selective coherence transfer S� fi I�

in a system consisting of two heteronuclear spins 1/2, the numerically
optimized transfer efficiencies g (T) (circles) and the analytically
derived time-optimal transfer efficiency (solid line) [24,25] are shown.
3. Examples

3.1. Time-optimal coherence-order selective in-phase

transfer

As a practical example, we consider coherence-order
selective in-phase transfer (I� fi S�) [23] in a heteronu-
clear two-spin system in the absence of relaxation. Here,
we are interested in the following question: what is the
minimum time to achieve a specified amount of coher-
ence transfer, or conversely, what is the maximum pos-
sible coherence transfer amplitude in any given time T

in the absence of relaxation, i.e., under unitary evolu-
tion? This is a simple, but non-trivial example, which
has only recently been solved analytically based on prin-
ciples of geometric control [24,25]. Hence, this consti-
tutes an ideal test case for the presented GRAPE
algorithm because numerically optimized transfer
amplitudes can be directly compared to the theoretical
benchmark provided by the analytical result. We as-
sume that both spins S and I are on-resonance in the
doubly rotating frame. The free evolution Hamiltonian
of the spin system is

H0 ¼ 2pJIzSz; ð37Þ
where J is the heteronuclear coupling constant. The ini-
tial density operator term of interest is q0 = I� = Ix � iIy
and the target operator is C = S� = Sx � iSy. In most
practical applications of coherence-order-selective
coherence transfer [21,23,26], the goal is to maximize
jÆS�jq(T)æj. Hence, the appropriate performance func-
tion is U2 [cf. Eq. (16)]. The normalized absolute value
of the transfer amplitude for a given mixing period T

is defined as [21]

gðT Þ ¼ jhS�jqðT Þij
kI�kkS�k ¼ 1

2
jhS�jqðT Þij: ð38Þ

In our numerical optimizations based on the GRAPE
algorithm, the heteronuclear coupling J was chosen to
be 1 Hz. Thirty pulses were optimized with total dura-
tions T in the range between 0 and 1.5 s (cf. Fig. 2), each
pulse was digitized in steps Dt = 0.002 s. For each time
step Dt, the x and y rf amplitudes irradiated at spins I

and S were optimized: u1ðjÞ ¼ mIxðjÞ, u2 ¼ mIyðjÞ, u3 ¼
mSxðjÞ, u4 ¼ mSy ðjÞ and H1 ¼ 2pIx, H2 ¼ 2pIy , H3 ¼ 2pSx,
H4 ¼ 2pSy (cf. Eq. (1)). For example, for T = 1.5 s, this
resulted in a total number of 6000 optimization param-
eters. For each value of T, the gradient flow algorithm
was started with initial sequences uk (j) which were cre-
ated by assigning a random value to every tenth point
and using a cubic spline fit to fill in the amplitudes
uk (j) of the intermediate time points. This resulted in
random but relatively smooth initial pulse amplitudes.
In these optimizations, the maximum rf amplitude was
not limited and we also did not include a penalty for in-
creased rf power (cf. Section 2.5). In Fig. 2, the numer-
ically optimized transfer efficiencies g (T) (circles) are
superimposed with the analytical curve (solid line),
representing time-optimal pulses [24,25]. For all chosen
total durations T, the maximum transfer efficiency g (T)
found by the gradient algorithm converged to the ana-
lytically derived optimum values. The minimum time
to reach full transfer (g = 1) is s* = 3/(2J) [24]. For



Fig. 3. Example of a numerically optimized pulse shape for coherence
order-selective coherence transfer I� fi S� found by the GRAPE
algorithm for a given total transfer time of T = 1/(2J) (cf. Fig. 2). (A)
The x amplitude (solid curve) and y amplitude (dashed curve) of the rf
field irradiated at spin I and (B) the x amplitude (solid curve) and y

amplitude (dashed curve) of the rf field irradiated at spin S.

Fig. 4. The efficiency g of the transfer from Iz to 2IzSz in the presence
of dipole–dipole relaxation in the spin diffusion limit as a function of
the sequence duration T (details, see text). The circles show the
efficiencies of five numerically optimized sequences of different
durations T and the curve represents the theoretical limit [31].
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T < T*, the optimal transfer amplitude is up to 12.5%
larger compared to the transfer amplitude of heteronu-
clear isotropic mixing [27–29]. For example, Fig. 3
shows an optimized pulse sequence found by the
GRAPE algorithm for T = 0.5 s. To simplify the com-
parison of the pulses applied to spins I and S, the arbi-
trary relative phase of the pulse sequence applied to spin
S was shifted by 200�. The figure shows that up to this
relative phase shift of the S pulse, the sequences are al-
most identical, as expected to create the required effec-
tive Hamiltonian [24]. Note that there is an infinite
number of possible pulse sequences, which create the
optimal average Hamiltonian and hence for each value
of T, many optimal solutions exist and the pulse se-
quences found by the GRAPE algorithm depend
strongly on the initial random sequence.

3.2. Relaxation-optimized pulse elements

As a second example, we consider the problem to
achieve optimal coherence transfer in the presence of
relaxation. For an isolated two-spin system in the
spin-diffusion limit, it has recently been demonstrated
that currently used pulse sequence elements such as IN-
EPT [30] are far from optimal. For example, if dipolar
relaxation between an isolated pair of spins is the dom-
inant relaxation mechanism, the in-phase to anti-phase
transfer (Ix to 2IzSx) via analytically derived relaxation
optimized pulse sequence elements (ROPE) [31,32] is
up to a factor of e/2 = 1.36 more efficient than the tra-
ditional INEPT transfer. Here, we demonstrate the
application of the GRAPE algorithm to the numerical
optimization of ROPE-type sequences and compare
the results to the analytical solutions.

We consider a system, consisting of two coupled het-
eronuclear spins 1/2, denoted I and S, with a coupling
constant of J = 194 Hz. In the spin diffusion limit only
the transverse relaxation rate k is nonzero, assuming
pure dipole–dipole relaxation (without CSA/DD cross-
correlation effects) [31]. We consider the case where
the transverse relaxation rate k as defined in [31] is equal
to the coupling constant, i.e., k/J = 1. (Here, a thermal
correction of the relaxation superoperator need not be
included if the transfer element is used as a mixing step
[22].) For the transfer Iz fi 2IzSz, the initial density oper-
ator is q (0) = Iz and the desired target operator:
C = 2IzSz. Both spins are assumed to be on-resonance
in a doubly rotating frame. Pulse shapes consisting of
N = 75 discrete time steps were optimized for various
pulse durations T, using the gradient dU0/duk (j) given
in Eq. (24). As in the previous example, a random initial
sequence was created for each value of T by assigning a
random rf amplitude to every tenth time point and using
a cubic spline fit to interpolate the amplitudes uk (j) of
the intermediate time points.

Fig. 4 shows the transfer efficiency of the numerically
optimized sequences (black circles). For comparison, the
figure also shows the analytical curve representing the
theoretical limit [31] of the transfer efficiency as a func-
tion of T, e.g., for T = 2.11 ms, (i.e., T/J�1 = 0.408), the
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numerically optimized pulse sequence is shown in Fig.
5A. This pulse shape is very close to the analytically de-
rived ROPE pulse [31]. It is interesting to note that the
numerically optimized pulse closely approaches the the-
oretical limit with a finite maximum rf amplitude. In the
center of the pulse, x and y rf amplitudes are slightly
overlapping, whereas this is not the case in the analytical
solution, which has a short delay in the center of the se-
quence. However, the characteristic ROPE transfer
mechanism (cf. Figs. 4 and 6 in [31]) is evident in Fig.
5B, which shows the trajectories of the non-vanishing
terms of the density operator under the action of the
pulse shape shown in Fig. 5A. In contrast to INEPT,
a large portion of Ix is immediately transformed to Iz,
which is protected from relaxation in the present model.
Consequently, Iz is brought in an optimal trajectory
back to the transverse plane in the first phase of the
transfer. In the last phase, 2IySz is lifted in a an optimal
way to 2IzSz, which is again protected against relaxation
[31]. Although for simplicity, CSA relaxation was not
Fig. 5. Example of a numerically optimized pulse sequence (A) of
duration T = 0.408J�1 for the transfer of Iz to 2IzSz in the presence of
dipole–dipole relaxation (cf. Fig. 4). mx and my correspond to the x

(solid curve) and y (dashed curve) rf amplitude irradiated at spin I. (B)
The corresponding trajectories of the non-vanishing density operator
terms during the relaxation-optimized pulse sequence.
considered in this example, it is straight-forward to in-
clude CSA relaxation as well as the effects of cross-cor-
relation in the relaxation matrix and to numerically
optimize corresponding pulses (data not shown) [33].
Furthermore, the algorithm is not limited to two cou-
pled spins and more complicated relaxation networks
can be taken into account.

3.3. Time-optimal implementation of unitary

transformations

This example illustrates the use of the GRAPE algo-
rithm in the development of pulse sequences that imple-
ment a desired unitary propagator in minimum time. We
consider a chain of three heteronuclear spins with cou-
pling constants J12 = J23 = J, J13 = 0. In a multiple-ro-
tating frame, in which the three heteronuclear spins
are on resonance, the free evolution Hamiltonian H0 is

H0 ¼ 2pJI1zI2z þ 2pJI2zI3z: ð39Þ
Many applications in NMR spectroscopy [34,35] and
NMR quantum computing [36–38] require unitary
transformations of the form

U zzzðaÞ ¼ exp �ia4I1zI2zI3zf g: ð40Þ

We recently derived analytically the minimum time
T* (a) to create U zzzðaÞ. The corresponding pulse se-
quences [39,40] are considerably shorter than conven-
tional implementations of these unitary propagators
[34,35,41,42]. For 0 6 a 6 p/2, the minimum time T* is
given by [39,40]

T �ðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að2p� aÞ

p
pJ

ð41Þ

and T*(np ± a) = T*(a), where n is an arbitrary integer.
Here, we used the gradient dU3/duk (j) defined in Eq.

(28), where the initial unitary propagator is the identity
matrix (U (0) = 1) and the target operator is
UðT Þ ¼ U zzzðaÞ for six values of a between 0 and p/2
(cf. Fig. 6). The heteronuclear couplings J were chosen
to be 1 Hz and each pulse was digitized in steps
Dt = 0.0025 s. For each time step Dt, the x and y rf
amplitudes irradiated at spins I1, I2, and I3 were opti-
mized. For each value of a, random initial pulse se-
quences were numerically optimized for various pulse
durations T, to determine the minimum T, for which
the numerical algorithm finds a performance index of
U3/Tr{1} = 1. In this series of optimizations, T was
incremented in steps of 0.05 s for each value of a. The
shortest durations T, for which a numerical value of
1.0 was found for U3/Tr{1} are indicated by circles in
Fig. 6. These durations represent upper numerical limits
for the minimum time T*. Fig. 7 shows the numerically
optimized pulse sequence for a = p/8 and T = 0.5 s. It is
qualitatively similar to the analytically derived sequence,
which consists only of rf pulses irradiated at spin I2 [39].



Fig. 6. The solid curve shows the analytical solution of the minimum
time T*(a) [39] for the creation of a propagator U zzzðaÞ ¼
expf�ia4I1zI2zI3zg in a spin system consisting of three heteronuclear
spins with couplings J12 = J23 = J and J13 = 0. For six values of a,
pulse sequences with various durations T were optimized using the
gradient dU3/duk(j) (cf. Eq. (28)) in steps DT = 0.05 J�1. For each a,
the largest value of T, for which the optimized numerical value U3/
Tr{1} was found to be smaller than 1.0 is indicated by an asterisk. The
shortest value of T, for which the optimized numerical value U3/Tr{1}
was found to be 1.0 is indicated by a circle.

Fig. 7. Example of a numerically optimized pulse sequence for the
creation of the propagator U zzzðaÞ corresponding to the data point
represented by a circle at a = p/8 in Fig. 6. The x and y amplitudes of
the rf pulse irradiated at spin I2 are shown. In comparison, the
numerically optimized rf amplitudes irradiated at spins I1 and I3 are
less than 0.5% at each point during the sequence (data not shown) and
can be neglected.
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The curve representing the analytical solution of T* (cf.
Eq. (41)) is also shown in Fig. 6 for comparison. The
asterisks represent the longest durations T with
U3/Tr{1} < 1.0. For a = p/40, p/16, p/8, p/4, 3p/8, and
p/2, the numerical values of U3/Tr{1} at the times T

indicated by asterisks in Fig. 6 were 0.99995, 0.99998,
0.9987, 0.9997, 0.9985, and 0.9994, respectively.
4. Conclusions

In this paper, we have presented a streamlined deriva-
tion of analytical gradients for the design of pulse se-
quences in NMR spectroscopy. We applied these
optimal control related algorithms to the design of pulse
shapes for problems involving transfer of coherence be-
tween coupled spins and synthesis of unitary propaga-
tors in a network of coupled spins. Although the
theory and numerical principles are textbook material
in the area of optimal control, its application to the con-
trol of coupled spin dynamics is new and promising. It
should be noted that the proposed gradient ascent algo-
rithms are not guaranteed to converge to a globally opti-
mal pulse shape. All that can be said is the proposed
algorithms will converge to a stationary point of the per-
formance function. To speed up convergence, the algo-
rithm can be further modified by using adaptive step
sizes for updating the control amplitudes as well as by
using conjugate gradients instead of ordinary ones.
These issues are technicalities of implementation that
have not been addressed here, where we highlighted
the basic ideas. In future extensions, we plan to test
these type of variations to speed up algorithms. Note
that variations of similar ideas have appeared in other
fields of coherent control [3,6,43], where iterative modi-
fications of controls yielded improved pulse shapes. All
these methods only guarantee convergence to some crit-
ical point that does not have to be the global optimum.
A standard modification to the gradient ascent intro-
duces randomness in the beginning when updating the
control amplitudes in order to avoid getting trapped in
local minima.

In the work introduced here, we have not only im-
proved upon pulse sequences, but the GRAPE algo-
rithms have lead us to novel coherence transfer
pathways. Further investigation has even triggered ana-
lytical solutions to optimal pulse shapes as well as opti-
mal pulse sequences. We have also used special
instantiations of the GRAPE algorithm for designing
broadband excitation pulses in uncoupled spin systems
[11], which are examples of robust control for a range
of spin system parameters, such as chemical shift and
rf amplitude. With the given gradients dUi/duk (j), it is
also straight forward to suppress undesired coherence
transfers while simultaneously optimizing desired trans-
fers. For example, this can be achieved by defining the
overall quality factor as a (weighted) sum of, e.g., U2

for the desired transfer and �U2 for the undesired trans-
fer. A practical problem is the choice of the number of
time steps for the discretization of pulse shapes for a
given control problem. This is directly related to the
number of pulse parameters to be optimized. The dis-
cretization should be chosen to ensure that the condition
given for Eq. (12) is approximately satisfied. In the pre-
sented examples, the chosen number of pulse parameters



304 N. Khaneja et al. / Journal of Magnetic Resonance 172 (2005) 296–305
was sufficiently large to achieve the previously known
theoretical performance limits, but we have not explored
in detail the minimal number of pulse sequence param-
eters necessary to achieve the theoretical bounds. In
practice, this may be done by increasing the number of
pulse sequence parameters until convergence of the per-
formance index is reached. In a recent paper [44], first
applications of the GRAPE algorithm to polarization
transfer in solid state NMR have been presented. This
forms a further example demonstrating the optimization
of robust pulse sequences for a large range of parame-
ters, e.g., due to the powder average of dipolar couplings
and the possibility to include a time-varying free-evolu-
tion Hamiltonian as in magic angle sample spinning.
The algorithm introduced here is expected to be a very
useful tool for developing superior pulse sequences in
multiple spin systems.
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